
Hadoop / MapReduce

ICOS Big Data Summer Camp
May 16th, 2018

Patrick Park

Goals

•  Brief Intro to Hadoop / MapReduce
•  Understand Structure of MapReduce
•  Learn Options for Processing at Scale
•  Implement MapReduce in Python (MrJob)

What is Hadoop?

The name comes from a toy elephant of the
main developer’s son

What is Hadoop?

The name comes from a toy elephant of the
main developer’s son

A software framework for distributed storage
and processing of big data using the
MapReduce programming model.

Why Hadoop?
Big data problem:

 - Storage: terabytes and beyond, hardware failure
 (annual failure rate ~ 2%)
 - I/O: reading/writing files take long time
 - Computation: Leveraging multiple processors
 - Scalability: Challenging to add more machines

Also, if many people are running their scripts, how does
the system efficiently distribute compute resources?

Hadoop Core Components

Problem 1

 How to store and access data

Problem 2

 How to manage/coordinate computing resources

Problem 3

 How to process data

Hadoop Core Components

Data Storage / Access
Hadoop File System (HDFS):
A Java-based distributed file system. Saves multiple
copies of the same data to tolerate disk failure

Annual disk failure rate: 2%

If you have same data
on four different disks,
what is the probability that
you lose all four copies?

à Very low

Resource Management

YARN (Yet Another Resource Negotiator):

Manages cluster resources such as memory and
CPU for multiple applications

- Beyond the scope of this lecture -

How to Process Data

Many Approaches
We focus on MapReduce

MapReduce

The big idea:

1. Split big data into smaller chunks
2. Process chunks simultaneously using multiple
machines

Faster than processing big data from one machine

MapReduce
Map:

 Read data from HDFS
 Format them into key-value pairs

Sort by Key:

 Group the values with the same key

Reduce:

 Perform computation on the grouped values
 Write output to disk

Uses of MapReduce

•  Grouping and Aggregation (word count)
•  Sorting
•  Merging, joining
•  Filtering
•  Set operations (union, intersection, difference)
•  Graph Processing (Iterative Message Passing)
•  Machine learning (k-means, logistic

regression)

Example: Word Count

Running MapReduce “Locally”

Typically, one develops MapReduce code
with a small sample dataset

Code is tested locally on a laptop

Running MapReduce in Distributed Mode

When code is tested and production-ready, run
large-scale MapReduce jobs:

 On-campus Flux Hadoop cluster
 Cloud platforms (Amazon, Microsoft, Google)

Python’s MrJob Library can be used on all of them

Flux Hadoop

Currently free of charge, but in beta testing phase
(More info on Thursday)

Cloud Platforms

MapReduce in the Cloud

Pay only the compute hours you consume

Frees you up from maintaining a physical
Hadoop cluster

Easily scalable to hundred’s of virtual servers

<WARNING>
Running buggy code can quickly burn $$

General references

Apache Hadoop: http://hadoop.apache.org/
MrJob: https://pythonhosted.org/mrjob/

Flux Hadoop: http://arc-ts.umich.edu/hadoop/
AWS: https://aws.amazon.com/

Azure: https://azure.microsoft.com/en-us/solutions/hadoop/
Google: https://cloud.google.com/hadoop/

Questions?

If none…

MrJob Exercise

Start jupyter notebook

and

Open mrjob_intro.ipynb

MrJob Configuration File

MrJob configuration file controls the
specifics of the EMR cluster

 - Number of instances
 - Bidding price for compute time
 - EMR version
 - Where to save log files

Running a Job

python your_script.py s3://your-data-location \
-r emr \
--no-output \
--output-dir=s3://output-location/ \
--conf-path=a_config.conf

Execution of this mrjob script
(a) spins up an EMR cluster on AWS based on the .conf file,
(b) runs your mrjob script and stores the output in AWS, and
(c) shuts down the EMR cluster when the job completes.

Word Count Demo

•  Count words in a large text file (14GB) of
English Wikipedia pages retrieved in 2017

•  Cluster spin-up and run time: 1h 46min
with 48 virtual cores (three m3.2xlarge
instances)

•  $0.254/hour * 2 hours * 3 instances =

$1.52

Modes of Execution
Local mode:

 - Run MapReduce code on a single machine
 - Does not involve HDFS access
 - Useful for code development and testing

Distributed mode:

 - Run code on a networked cluster of machines
 - Involves HDFS access
 - Hadoop cluster vs. cloud

