
Command Line + BASH
Scripting

Nel Escher

Agenda

• Command line
• Working with absolute and relative paths
• Running programs
• Redirecting program output

• Scripting
• Automate sequences of commands!

Say Goodbye to Your Precious Windowed GUI

Open up the Command Line Interface

• On Mac – Terminal
• On PC – Ubuntu

Mac Users!!

• Terminal --> Preferences --> Pick a color scheme that speaks to you

The Shell

• You type commands into the shell
• Operating system performs those commands

• The jobs of a shell
• Spawn (launch) new programs
• Handle input and output to programs
• Kill and clean up old programs

Navigating the file system

Absolute paths

• A path that specifies the location of a file or directory from the root
directory (/)
• To write an absolute pathname:
• Start at the root directory (/) and work down.
• Write a slash (/) after every directory name

/Users/root/Desktop/
/Users/root/Documents/DataCamp/
/Users/root/Documents/DataCamp/shell_slides.pdf

Relative paths

• Relative path is defined as the path related to the present working
directly. It starts at your current directory and never starts with a / .

Documents/
Documents/DataCamp/

• if we are looking for photos then absolute path for it will be provided
as /home/jono/photos but assuming that we are already present in
jono directory then the relative path for the same can be written as
simple photos. https://www.geeksforgeeks.org/absolute-relative-pathnames-unix/

pwd

• Print Working Directory
• Prints the absolute path of the working directory, starting from the

root

cd

• Change directory
• cd directory_name/
• Change directory “down” a level

to a folder inside working
directory

• cd ..
• Change directory “up” a level to

the folder that contains the
working directory

• if we are already present in jono directory, then after issuing the
command we will be in the work directory

cd work/

It’s a similar idea to a GUI folder interface
My working directory is Documents/
By double clicking, I’ll change directory (cd) to Data\ Camp/

• if we are already present in jono directory, then after issuing the
command we will be in the home directory

cd ..

My working directory is Data\ Camp/
By clicking the back button, I’ll change directory to the Documents/ folder (like cd ..)

Commands

• pwd
• Print working directory

• ls
• List files and directories

• cd
• Change directory

• cat [filename]
• E.g. cat clue1.txt
• Print the contents of the file

Scavenger Hunt

• cat [filename]
• E.g. cat clue1.txt
• Print the contents of the file

• ls
• List files and directories inside working directory

• cd directory_name/
• Change directory “down” a level to a folder inside

working directory
• cd ..

• Change directory “up” a level to the folder that
contains the working directory

• pwd
• Print working directory
• Use this if you get lost!

scavenge
├── athletic
│ ├── big_house
│ │ ├── u
│ │ ├── v
│ │ └── w
│ ├── crisler
│ │ ├── s
│ │ └── t
│ └── yost
│ ├── x
│ ├── y
│ └── z
└── central

├── angell
│ ├── o
│ └── p
├── hatcher
│ ├── m
│ └── n
└── ross

├── q
└── rHot tip! Use the tab button to autocomplete file + folder names

The Python Program: The Interactive
Interpreter
• cd into the python/ folder
• Start up the python program by running the python command

$ python
• You can try running lines of python code in this interactive interpreter

>>> (10 * “dog”)

• When you want to go back to the command line
>>> exit()

Running Python Files

• Format of the command:
$ python <filename>.py

• Run the python program and pass it the file hello.py
$ python hello.py

Try it!
• Run the python program and pass it the file hello_lots.py

Passing Command Line Arguments to Python
Files
• For some programs, you can change behavior by providing additional

arguments
• Run the python program and pass it the file hello_name.py and a

string
$ python hello_name.py nel

Try it!
• Run the python program and pass it the file hello_name.py and the

name of your dearest pal

We’re running the
python program Python file we’re going to run Argument provided to

to hello_name.py

Passing Relative Paths as Command Line
Arguments to Python Files
Make use of relative paths if you wish to pass in a file that is in a
different directory!

$ python cleaner.py data/dracula.txt

OR

$ cd data/
$ python ../cleaner.py dracula.txt

File Redirection

• Operators
< send file as input
> send output to file (create/overwrite)

• Try it!
$ python hello_lots.py > hello_lots_out.txt
$ cat hello_lots_out.txt

Run the python program, pass it the file hello_name.py and your name,
and save the output in a file hello_to_me.txt

Putting it together

$ python3 cleaner.py data/dracula.txt >
intermediate/cleaner_dracula.out
$ cat intermediate/cleaner_dracula.out

Try it out! Can you clean up huckleberry.txt and save the cleaner
version as cleaner_huckleberry.out in the intermediate/ folder?

What are some other cool programs that can
be run at the command line?
• git
• Version control!
• Good for collaborating on coding projects

• vi
• Text editor you can use inside the shell

• diff
• Compare two different files and get the lines where they are different

Programs you write yourself!

Flags

• Sometimes you can change how a program or command works by
including flags

$ ls
native packages props repCache systemDialogs
weka.log
$ ls –a
. native props systemDialogs wekaMetaStore ..
packages repCache weka.log

How do I know what I can do with a program?

• man
• Manual
• Has documentation for programs
$ man python

• help
• Provides help for bash built-in commands
$ help cd

What about scripting?

• Surprise! You've been scripting this whole time!
• Typing commands into the bash shell and running a bash script are

the same
$ cat test.sh

python hello.py > hello.txt
cat hello.txt

$ chmod +x test.sh # makes your file an executable
$./test.sh

How to write a bash script?

• Try things out in the terminal
• Copy things that work into a file ($ history)
• Run that file
• Repeat

Bash

• Bash is old...
• But useful, especially for really short things
• But has ugly and finicky syntax
• But running programs is really easy
• (it's what it was built for after all)
• g++ -O3 -m32 thread.o libinterrupt.a test1.cpp -ldl -o test1
• ./test1

Scripting

• First line of scripts:
#!/bin/bash

• Special variables
• $0 current script
• $n script args 1, 2, 3...

• Other variables, math, if/then, etc. are available

Let’s run a script!

Make sure yr working directory is the python/ folder

$ chmod +x bin/hello.sh
$./bin/hello.sh

Try it out! Try to run the script located at bin/excessive_greetings.sh

Let’s run a cooler script!

Make sure yr working directory is the python/ folder

This script takes two arguments

$ chmod +x bin/hello_cooler.sh
$./bin/hello_cooler.sh nel hi_to_nel.txt

Try it! Run the script with your own name and filename. Use cat to verify file contents

Then, open up the hello_cooler.sh file in a text editor (Sublime, Atom, Notepad, etc.)
and take a look at the syntax

Scripting exercise – the main idea

• We will be making a script that runs a series of python commands
• Given a book that has chapters, we will count up how many times

each word appears in each chapter

chapter word count
0 i you 9
1 i dont 4
2 i know 3
3 i about 15
4 i me 24

CHAPTER I.

YOU don't know about me without you have
read a book by the name of The
Adventures of Tom Sawyer; but that ain't no
matter. […]

input output

Scripting exercise – the python files

cleaner.py
• Takes in a text file
• Outputs that text file in all lowercase and

common punctuation removed

chapter_word.py
• Takes in a text file that contains chapters
• Outputs each word in the text file along with the

chapter in which it appears (a key/value pair)

key_val_total.py
• Takes in a key value pair
• Prints that key value pair and how many times

that key value pair

CHAPTER I.
YOU don't know

chapter i
you dont know

chapter i
you dont know

i you
i dont
i know

i you
i dont
i know

i you 9
i dont 4
i know 3

INPUT OUTPUT

Now you make a script!
• Your bash script will take two arguments – the file you want to process and

the location of the final output
• Reference the first argument to the scripts using $1
• Reference the second argument to the scripts using $2

• Tip: try running these three python files on the command line before
sticking them in your script
• (Follow the comments in process_book.sh for implementation details)

Example runs:
$./bin/process_book.sh data/huckleberry.txt output/huckleberry.out
$./bin/process_book.sh data/dracula.txt output/dracula.out

Check out that sweet sweet data

$ python
>>> import pandas
>>> data = pandas.read_csv('output/huckleberry.out',
sep=" ", header=None, names=['chapter', 'word',
'count'])

